Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## 3,3'-Dibromo-4,4'-[(1*R*,2*R*)-cyclohexane-1,2-diyldiimino]dipent-3-en-2-one

#### Yun-Qian Zhang,\* Qi-Long Zhang and Bi-Xue Zhu

Key Laboratory of Macrocyclic and Supramolecular Chemistry, of Guizhou Province, Guizhou University, Guiyang, 550025, People's Republic of China. Correspondence e-mail: sci.yqzhang@gzu.edu.cn

Received 14 December 2008; accepted 18 December 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.013 Å; R factor = 0.042; wR factor = 0.096; data-to-parameter ratio = 8.5.

The asymmetric unit of the title compound,  $C_{16}H_{24}Br_2N_2O_2$ , contains two independent molecules, each which has two intramolecular  $N-H\cdots O$  hydrogen bonds linking the amine N atoms to the enolic O atoms of the same acacH-imine unit. In the crystal, the molecules are lined up by intermolecular weak  $C-H\cdots O$  hydrogen bonds, forming two vertical each other two-dimensional chains along the *a* axis and *b* axis of the unit cell, respectively.

### **Related literature**

For general background, see: Bottcher *et al.* (1997); Bu *et al.* (1997); Chimpalee *et al.* (2000); Dominiak *et al.* (2003); Gilli *et al.* (1989); McCann *et al.* (2001); Na *et al.* (2002); Ozkar *et al.* (2004); Tacke *et al.* (2003); Zhang *et al.* (2003).



### Experimental

 Crystal data

  $C_{16}H_{24}Br_2N_2O_2$   $V = 1863 (3) Å^3$ 
 $M_r = 436.19$  Z = 4 

 Monoclinic,  $P2_1$  Mo K\alpha radiation

 a = 9.249 (5) Å  $\mu = 4.36 \text{ mm}^{-1}$  

 b = 9.350 (6) Å T = 298 (2) K 

 c = 21.82 (2) Å  $0.21 \times 0.18 \times 0.16 \text{ mm}$ 

Data collection

```
Bruker APEXII CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
T_{min} = 0.461, T_{max} = 0.542
(expected range = 0.424–0.498)
```

### Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.042 & 1 \text{ restrai} \\ wR(F^2) &= 0.096 & \text{H-atom} \\ S &= 0.97 & \Delta\rho_{\text{max}} = \\ 3433 \text{ reflections} & \Delta\rho_{\text{min}} = \\ 405 \text{ parameters} \end{split}$$

12101 measured reflections 3433 independent reflections 1894 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.055$ 

 $\begin{array}{l} 1 \mbox{ restraint} \\ \mbox{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.38 \mbox{ e } \mbox{ Å}^{-3} \\ \Delta \rho_{min} = -0.42 \mbox{ e } \mbox{ Å}^{-3} \end{array}$ 

## Table 1 Hydrogen-bond geometry (Å, $^{\circ}$ ).

| $D - H \cdots A$          | D-H                       | $H \cdot \cdot \cdot A$ | $D \cdots A$                       | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|---------------------------|---------------------------|-------------------------|------------------------------------|--------------------------------------|
| N1-H1···O1                | 0.86                      | 1.96                    | 2.588 (8)                          | 129                                  |
| $N2-H2\cdots O2$          | 0.86                      | 1.93                    | 2.584 (9)                          | 131                                  |
| N3-H3···O3                | 0.86                      | 1.98                    | 2.602 (9)                          | 129                                  |
| N4-H4···O4                | 0.86                      | 1.97                    | 2.596 (9)                          | 129                                  |
| $C5-H5C\cdots O2^{i}$     | 0.96                      | 2.66                    | 3.463 (12)                         | 142                                  |
| $C12-H12B\cdots O1^{ii}$  | 0.96                      | 2.56                    | 3.416 (12)                         | 149                                  |
| $C23-H23A\cdots O3^{iii}$ | 0.97                      | 2.66                    | 3.581 (12)                         | 159                                  |
| $C28-H28C\cdots O4^{iv}$  | 0.96                      | 2.65                    | 3.419 (13)                         | 138                                  |
| Symmetry codes: (i) $-x$  | $+1, y - \frac{1}{2}, -z$ | +1;(ii) -x, y -         | $+\frac{1}{2}, -z + 1;$ (iii) $-z$ | $x + 1, y + \frac{1}{2}, -z;$        |

Symmetry codes: (1) -x + 1,  $y - \frac{1}{2}$ , -z + 1; (11) -x,  $y + \frac{1}{2}$ , -z + 1; (11) (iv) -x + 2,  $y - \frac{1}{2}$ , -z.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

We acknowledge the support of the Natural Science Foundation and the International Cooperation Foundation of Guizhou Province, P. R. China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2694).

#### References

- Bottcher, A., Takeuchi, T., Hardcastle, K. I., Meade, T. J. & Gray, H. B. (1997). Inorg. Chem. 36, 2498–2504.
- Bruker, (2005). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
- Bu, X. R., Jackson, C. R., Derveer, D. V., You, X. Z., Meng, Q. J. & Wang, R. X. (1997). Polyhedron, 16, 2991–3001.
- Chimpalee, N., Chimpalee, D., Keawpasert, P. & Burns, D. T. (2000). Anal. Chim. Acta, 408, 123–125.
- Dominiak, P. M., Grech, E., Barr, G., Teat, S., Mallinson, P. & Wozniak, K. (2003). Chem. Eur. J. 9, 963–970.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gilli, G., Bellucci, F., Ferretti, V. & Bertolasi, V. (1989). J. Am. Chem. Soc. 111, 1023–1028.
- McCann, M., Townsend, S., Devereux, M., McKee, V. & Walker, B. (2001). Polyhedron, 20, 2799–2806.
- Na, H. G., Lee, J. W., Choi, J. H., Byun, J. C. & Park, Y. C. (2002). *Polyhedron*, **21**, 917–920.
- Ozkar, S., Ulku, D., Yildirim, L. T., Biricik, N. & Gumgum, B. (2004). J. Mol. Struct. 688, 207–211.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Tacke, R., Bertermann, R., Penka, M. & Seiler, O. (2003). Z. Anorg. Allg. Chem. 629, 2415–2420.

Zhang, Y. L., Ruan, W. J., Li, Y., Nan, J. & Zhu, Z. A. (2003). Acta Chem. Sin. 61, 186–191.

Acta Cryst. (2009). E65, o203-o204 [doi:10.1107/S1600536808043213]

## 3,3'-Dibromo-4,4'-[(1R,2R)-cyclohexane-1,2-diyldiimino]dipent-3-en-2-one

## Y.-Q. Zhang, Q.-L. Zhang and B.-X. Zhu

#### Comment

Schiff base obtained from condensation of acetylacetone and different diamines have been used as ligand for the complex formation with a variety of transition metals (Bottcher *et al.*, 1997; McCann *et al.*, 2001; Na *et al.*, 2002; Ozkar *et al.*, 2004; Tacke *et al.*, 2003). and have found immense analytical applications (Chimpalee *et al.*, 2000; Zhang *et al.*, 2003). In this work, we report a crystal structure of N, *N*-bis(bromo-acetylacetone)-1*R*,2*R*-diaminocyclohexane ligands.

The crystal structure of the title compound is shown in Fig. 1, each dissymmetrical unit cell contains two vertical each other independent molecules. Each molecule has two intramolecular  $N^+$ —H···O<sup>-</sup> hydrogen bonds, which links each nitrogen atoms to the corresponding nearby terminal oxygen atoms of the same acacH-imine unit (N1—H1···O1, N2—H2···O2, N3—H3···O3 and N4—H4···O4, Table 1) such that a coplanar six-membered ring is generated. As shown in Fig. 2, the molecules of the title compound are lined up by the intermolecular interaction (C—H···O, Table 1.) forming two vertical each other two-dimensional chains along the *a* axis and *b* axis of the unit cell, respectively. The structure also shows a non-coplanar array for the (*R*, *R*)-cyclohexanediamine moiety and both of the C=N imine groups have the *Z* arrangements with respect to the chiral C—C sigma bond (C6—C11 or C22—C27) in the cyclohexanediamine, and the Schiff base molecule are non-coplanar due to chirality of the cyclohexanediamine moiety.

#### **Experimental**

1R,2R-Diaminocyclohexane (0.115 g, 1.00 mmol) was added slowly, whilst stirring, to a methanol (15 ml) solution with acetylacetone (0.2 g, 2.00 mmol), and the mixture was heated at reflux for 2 h. After cooling, and the solvent was removed under reduced pressure. The crude product was purified by column chromatography over silica gel using 20% EtOAc-hexane to afford pure yellow crystals of *N*,*N*-bis-acetylacetone-1R,2R-dDiaminocyclohexane and dried in vacuum. Solid *N*-bromosuccimide (0.088 g, 0.5 mmol) was added slowly, whilst stirring, to a solution of the compound 1 (0.14 g, 0.5 mmol) in ethanol (20 ml). Stirring the solution for 2 h, and then the solvent was removed under reduced pressure. The crude product was purified by column chromatography over silica gel using 35% EtOAc-CH<sub>2</sub>Cl<sub>2</sub> to afford pure pale yellow crystals of 2 and dried in vacuum, 0.1 g (yield 46%). Single crystals suitable for X-ray diffraction were obtained from an ethanol-CH<sub>2</sub>Cl<sub>2</sub> mixture by slow evaporation at room temperature.

#### Refinement

All H atoms were placed in calculated positions and refined as riding, with C—H = 0.96-0.98 Å, N—H = 0.86 Å, and  $U_{iso}(H) = 1.2-1.5U_{eq}(C,N)$ .

Figures



Fig. 1. The molecular structure of (II) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds.

Fig. 2. Packing diagram of (II), viewed in the *ab* plane, with the C—H…O interactions shown as dashed lines.

## 3,3'-Dibromo-4,4'-[(1*R*,2*R*)-cyclohexane-1,2- diyldiimino]dipent-3-en-2-one

| Crystal data                      |                                              |
|-----------------------------------|----------------------------------------------|
| $\mathrm{C_{16}H_{24}Br_2N_2O_2}$ | $F_{000} = 880$                              |
| $M_r = 436.19$                    | $D_{\rm x} = 1.555 {\rm ~Mg~m}^{-3}$         |
| Monoclinic, P2 <sub>1</sub>       | Mo $K\alpha$ radiation $\lambda = 0.71073$ Å |
| Hall symbol: P 2yb                | Cell parameters from 5587 reflections        |
| a = 9.249 (5)  Å                  | $\theta = 1.0-25.0^{\circ}$                  |
| b = 9.350 (6)  Å                  | $\mu = 4.36 \text{ mm}^{-1}$                 |
| c = 21.82 (2) Å                   | T = 298 (2) K                                |
| $\beta = 99.122 \ (13)^{\circ}$   | Prism, colourless                            |
| $V = 1863 (3) \text{ Å}^3$        | $0.21\times0.18\times0.16~mm$                |
| 7 = 4                             |                                              |

## Data collection

| Bruker APEXII CCD area-detector<br>diffractometer           | 3433 independent reflections           |
|-------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                    | 1894 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                     | $R_{\rm int} = 0.055$                  |
| T = 298(2)  K                                               | $\theta_{\text{max}} = 25.0^{\circ}$   |
| $\varphi$ and $\omega$ scan                                 | $\theta_{\min} = 1.0^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Bruker, 2005) | $h = -10 \rightarrow 10$               |
| $T_{\min} = 0.461, \ T_{\max} = 0.542$                      | $k = -9 \rightarrow 10$                |
| 12101 measured reflections                                  | $l = -25 \rightarrow 25$               |

## Refinement

| Refinement on $F^2$             | Secondary atom site location: difference Fourier map     |
|---------------------------------|----------------------------------------------------------|
| Least-squares matrix: full      | Hydrogen site location: inferred from neighbouring sites |
| $R[F^2 > 2\sigma(F^2)] = 0.042$ | H-atom parameters constrained                            |

| $wR(F^2) = 0.096$                                       | $w = 1/[\sigma^2(F_0^2) + (0.0413P)^2]$<br>where $P = (F_0^2 + 2F_c^2)/3$ |
|---------------------------------------------------------|---------------------------------------------------------------------------|
| <i>S</i> = 0.97                                         | $(\Delta/\sigma)_{\rm max} < 0.001$                                       |
| 3433 reflections                                        | $\Delta \rho_{\text{max}} = 0.38 \text{ e } \text{\AA}^{-3}$              |
| 405 parameters                                          | $\Delta \rho_{min} = -0.42 \text{ e } \text{\AA}^{-3}$                    |
| 1 restraint                                             | Extinction correction: none                                               |
| Drimony atom site location, structure inversiont direct |                                                                           |

Primary atom site location: structure-invariant direct methods

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x           | У           | Z          | $U_{\rm iso}*/U_{\rm eq}$ |
|------|-------------|-------------|------------|---------------------------|
| C1   | 0.1762 (11) | 0.3858 (14) | 0.3222 (5) | 0.102 (4)                 |
| H1A  | 0.2497      | 0.3346      | 0.3045     | 0.153*                    |
| H1B  | 0.1468      | 0.4689      | 0.2975     | 0.153*                    |
| H1C  | 0.0929      | 0.3250      | 0.3230     | 0.153*                    |
| C16  | 0.1713 (12) | 0.9661 (18) | 0.3226 (5) | 0.131 (5)                 |
| H16A | 0.0735      | 0.9879      | 0.3029     | 0.197*                    |
| H16B | 0.2099      | 0.8896      | 0.3007     | 0.197*                    |
| H16C | 0.2319      | 1.0493      | 0.3221     | 0.197*                    |
| C17  | 0.5609 (13) | 0.7298 (16) | 0.1865 (4) | 0.115 (4)                 |
| H17A | 0.4725      | 0.7689      | 0.1975     | 0.172*                    |
| H17B | 0.6440      | 0.7704      | 0.2127     | 0.172*                    |
| H17C | 0.5612      | 0.6279      | 0.1919     | 0.172*                    |
| C32  | 1.1245 (13) | 0.7174 (16) | 0.1748 (4) | 0.122 (5)                 |
| H32A | 1.2105      | 0.7738      | 0.1732     | 0.183*                    |
| H32B | 1.1522      | 0.6277      | 0.1947     | 0.183*                    |
| H32C | 1.0604      | 0.7677      | 0.1979     | 0.183*                    |
| C2   | 0.2376 (11) | 0.4310 (12) | 0.3872 (4) | 0.069 (3)                 |
| C3   | 0.3634 (9)  | 0.5293 (10) | 0.4000 (4) | 0.055 (2)                 |
| C4   | 0.4082 (8)  | 0.5911 (10) | 0.4549 (4) | 0.046 (2)                 |
| C5   | 0.5318 (9)  | 0.6972 (11) | 0.4656 (4) | 0.070 (3)                 |
| H5A  | 0.4926      | 0.7922      | 0.4662     | 0.106*                    |
| H5B  | 0.5895      | 0.6896      | 0.4329     | 0.106*                    |
| H5C  | 0.5922      | 0.6776      | 0.5047     | 0.106*                    |
| C6   | 0.3513 (9)  | 0.6388 (10) | 0.5616 (3) | 0.052 (2)                 |

| H6    | 0.4254      | 0.7139      | 0.5619      | 0.062*    |
|-------|-------------|-------------|-------------|-----------|
| C7    | 0.3927 (9)  | 0.5475 (11) | 0.6202 (4)  | 0.070 (3) |
| H7A   | 0.3207      | 0.4722      | 0.6209      | 0.083*    |
| H7B   | 0.4872      | 0.5029      | 0.6196      | 0.083*    |
| C8    | 0.3994 (10) | 0.6376 (11) | 0.6772 (4)  | 0.071 (3) |
| H8A   | 0.4779      | 0.7067      | 0.6782      | 0.085*    |
| H8B   | 0.4220      | 0.5771      | 0.7136      | 0.085*    |
| C9    | 0.2550 (10) | 0.7176 (12) | 0.6800 (4)  | 0.077 (3) |
| H9A   | 0.2673      | 0.7807      | 0.7157      | 0.092*    |
| H9B   | 0.1785      | 0.6493      | 0.6847      | 0.092*    |
| C10   | 0.2096 (10) | 0.8057 (11) | 0.6204 (4)  | 0.072 (3) |
| H10A  | 0.1151      | 0.8499      | 0.6215      | 0.086*    |
| H10B  | 0.2805      | 0.8813      | 0.6183      | 0.086*    |
| C11   | 0.2002 (8)  | 0.7125 (9)  | 0.5630 (3)  | 0.043 (2) |
| H11   | 0.1257      | 0.6386      | 0.5646      | 0.052*    |
| C12   | -0.0578 (9) | 0.6500 (11) | 0.4709 (4)  | 0.078 (3) |
| H12A  | -0.1318     | 0.6411      | 0.4349      | 0.117*    |
| H12B  | -0.1019     | 0.6817      | 0.5055      | 0.117*    |
| H12C  | -0.0119     | 0.5589      | 0.4804      | 0.117*    |
| C13   | 0.0560 (8)  | 0.7578 (10) | 0.4581 (4)  | 0.049 (2) |
| C14   | 0.0573 (9)  | 0.8253 (10) | 0.4022 (4)  | 0.057 (2) |
| C15   | 0.1691 (11) | 0.9218 (11) | 0.3882 (5)  | 0.067 (3) |
| C18   | 0.5690 (10) | 0.7649 (12) | 0.1194 (4)  | 0.065 (3) |
| C19   | 0.6550 (9)  | 0.8842 (10) | 0.1036 (4)  | 0.051 (2) |
| C20   | 0.6869 (9)  | 0.9063 (9)  | 0.0454 (4)  | 0.048 (2) |
| C21   | 0.7836 (10) | 1.0251 (10) | 0.0312 (4)  | 0.069 (3) |
| H21A  | 0.8836      | 1.0023      | 0.0474      | 0.103*    |
| H21B  | 0.7563      | 1.1118      | 0.0501      | 0.103*    |
| H21C  | 0.7731      | 1.0379      | -0.0129     | 0.103*    |
| C22   | 0.6848 (8)  | 0.8009 (8)  | -0.0591 (4) | 0.042 (2) |
| H22   | 0.7621      | 0.8716      | -0.0611     | 0.051*    |
| C23   | 0.5697 (10) | 0.8218 (10) | -0.1152 (4) | 0.066 (3) |
| H23A  | 0.5299      | 0.9176      | -0.1146     | 0.079*    |
| H23B  | 0.4905      | 0.7545      | -0.1138     | 0.079*    |
| C24   | 0.6317 (11) | 0.8001 (12) | -0.1745 (4) | 0.077(3)  |
| H24A  | 0.5537      | 0.8106      | -0.2096     | 0.093*    |
| H24B  | 0.7042      | 0.8735      | -0.1777     | 0.093*    |
| C25   | 0.7009 (12) | 0.6564 (15) | -0.1775 (4) | 0.100 (4) |
| H25A  | 0.7474      | 0.6501      | -0.2143     | 0.120*    |
| H25B  | 0.6268      | 0.5824      | -0.1799     | 0.120*    |
| C26   | 0 8189 (10) | 0.6342 (11) | -0 1174 (4) | 0.069(3)  |
| H26A  | 0.8597      | 0.5387      | -0.1179     | 0.083*    |
| H26B  | 0.8980      | 0.7021      | -0.1177     | 0.083*    |
| C27   | 0.7536 (9)  | 0.6538 (9)  | -0.0592(4)  | 0.003(2)  |
| H27   | 0.6771      | 0.5817      | -0.0583     | 0.064*    |
| C28   | 0.7431 (10) | 0.4321 (10) | 0.0342 (5)  | 0.069 (3) |
| H28A  | 0.6476      | 0.4693      | 0.0370      | 0.104*    |
| H28B  | 0.7692      | 0.3612      | 0.0659      | 0 104*    |
| H28C  | 0.7423      | 0.3894      | -0.0058     | 0.104*    |
| 11200 | 0.7 125     | 0.5071      | 0.0000      | 0.10 T    |

| C29 | 0.8524 (8)    | 0.5509 (9)   | 0.0430 (4)  | 0.048 (2)   |
|-----|---------------|--------------|-------------|-------------|
| C30 | 0.9422 (9)    | 0.5755 (10)  | 0.0989 (4)  | 0.057 (2)   |
| C31 | 1.0469 (10)   | 0.6904 (13)  | 0.1100 (5)  | 0.071 (3)   |
| N1  | 0.3468 (6)    | 0.5565 (7)   | 0.5046 (3)  | 0.0480 (18) |
| H1  | 0.2996        | 0.4770       | 0.5026      | 0.058*      |
| N2  | 0.1623 (6)    | 0.7941 (8)   | 0.5063 (3)  | 0.0534 (18) |
| H2  | 0.2105        | 0.8715       | 0.5028      | 0.064*      |
| N3  | 0.6301 (6)    | 0.8226 (7)   | -0.0014 (3) | 0.0495 (18) |
| Н3  | 0.5522        | 0.7761       | 0.0032      | 0.059*      |
| N4  | 0.8647 (6)    | 0.6349 (7)   | -0.0047 (3) | 0.0509 (19) |
| H4  | 0.9450        | 0.6820       | -0.0034     | 0.061*      |
| 01  | 0.1794 (7)    | 0.3886 (7)   | 0.4302 (3)  | 0.0709 (18) |
| O2  | 0.2644 (7)    | 0.9658 (7)   | 0.4308 (3)  | 0.0779 (19) |
| O3  | 0.5019 (7)    | 0.6859 (8)   | 0.0789 (3)  | 0.085 (2)   |
| O4  | 1.0671 (6)    | 0.7704 (8)   | 0.0690 (3)  | 0.081 (2)   |
| Br1 | 0.44737 (12)  | 0.58781 (14) | 0.32986 (5) | 0.0905 (4)  |
| Br2 | -0.08805 (11) | 0.76970 (15) | 0.33409 (5) | 0.0971 (4)  |
| Br3 | 0.74344 (13)  | 1.00453 (13) | 0.17037 (5) | 0.0946 (4)  |
| Br4 | 0.91939 (13)  | 0.45712 (13) | 0.16842 (5) | 0.0993 (5)  |

## Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$   | $U^{22}$   | $U^{33}$  | $U^{12}$    | $U^{13}$   | $U^{23}$   |
|-----|------------|------------|-----------|-------------|------------|------------|
| C1  | 0.082 (8)  | 0.137 (11) | 0.085 (8) | 0.005 (7)   | 0.008 (6)  | -0.040 (8) |
| C16 | 0.119 (10) | 0.208 (16) | 0.064 (8) | -0.021 (11) | 0.011 (7)  | 0.071 (9)  |
| C17 | 0.160 (11) | 0.127 (11) | 0.067 (7) | -0.012 (9)  | 0.050 (7)  | 0.005 (8)  |
| C32 | 0.131 (9)  | 0.147 (13) | 0.074 (8) | 0.010 (9)   | -0.029 (7) | -0.006 (9) |
| C2  | 0.074 (7)  | 0.091 (8)  | 0.043 (6) | 0.012 (6)   | 0.017 (5)  | -0.001 (6) |
| C3  | 0.054 (5)  | 0.066 (7)  | 0.046 (6) | 0.009 (5)   | 0.015 (4)  | 0.003 (5)  |
| C4  | 0.042 (5)  | 0.048 (5)  | 0.050 (5) | 0.007 (5)   | 0.013 (4)  | 0.003 (5)  |
| C5  | 0.059 (6)  | 0.069 (7)  | 0.086 (7) | -0.004 (5)  | 0.022 (5)  | -0.012 (6) |
| C6  | 0.064 (6)  | 0.069 (7)  | 0.024 (4) | -0.001 (5)  | 0.012 (4)  | 0.001 (4)  |
| C7  | 0.071 (6)  | 0.091 (9)  | 0.046 (6) | 0.022 (6)   | 0.007 (4)  | 0.012 (6)  |
| C8  | 0.081 (7)  | 0.087 (8)  | 0.042 (6) | 0.017 (6)   | 0.000 (5)  | 0.011 (5)  |
| C9  | 0.103 (7)  | 0.091 (8)  | 0.037 (5) | 0.016 (7)   | 0.011 (5)  | -0.001 (5) |
| C10 | 0.083 (6)  | 0.082 (8)  | 0.050 (6) | 0.007 (6)   | 0.010 (5)  | -0.007 (6) |
| C11 | 0.051 (5)  | 0.051 (5)  | 0.028 (4) | -0.002 (4)  | 0.006 (4)  | 0.001 (4)  |
| C12 | 0.061 (6)  | 0.086 (9)  | 0.085 (8) | -0.017 (6)  | 0.007 (5)  | -0.011 (6) |
| C13 | 0.050 (5)  | 0.044 (6)  | 0.052 (6) | 0.002 (5)   | 0.009 (4)  | -0.005 (5) |
| C14 | 0.049 (5)  | 0.066 (7)  | 0.052 (6) | 0.003 (5)   | -0.002 (4) | -0.013 (5) |
| C15 | 0.076 (7)  | 0.061 (7)  | 0.065 (7) | 0.006 (6)   | 0.017 (6)  | 0.004 (6)  |
| C18 | 0.082 (6)  | 0.067 (7)  | 0.049 (6) | 0.023 (7)   | 0.018 (5)  | 0.002 (6)  |
| C19 | 0.053 (5)  | 0.053 (6)  | 0.047 (6) | -0.010 (5)  | 0.008 (4)  | -0.011 (5) |
| C20 | 0.052 (5)  | 0.039 (6)  | 0.052 (6) | 0.007 (4)   | 0.008 (5)  | -0.002 (5) |
| C21 | 0.093 (7)  | 0.060 (7)  | 0.056 (6) | -0.015 (6)  | 0.018 (5)  | -0.008 (5) |
| C22 | 0.051 (5)  | 0.036 (6)  | 0.039 (5) | -0.006 (4)  | 0.004 (4)  | -0.003 (4) |
| C23 | 0.092 (7)  | 0.064 (7)  | 0.039 (5) | 0.015 (5)   | 0.001 (5)  | 0.001 (5)  |
| C24 | 0.104 (7)  | 0.089 (8)  | 0.034 (6) | 0.034 (7)   | -0.003 (5) | 0.011 (5)  |
|     |            |            |           |             |            |            |

| C25 | 0.120 (9)   | 0.144 (12)  | 0.034 (6)  | 0.042 (8)   | 0.001 (6)   | -0.024 (6)  |
|-----|-------------|-------------|------------|-------------|-------------|-------------|
| C26 | 0.087 (7)   | 0.079 (8)   | 0.041 (5)  | 0.016 (5)   | 0.008 (5)   | -0.002 (5)  |
| C27 | 0.049 (5)   | 0.060 (7)   | 0.050 (6)  | -0.008 (4)  | 0.005 (4)   | -0.006 (5)  |
| C28 | 0.079 (7)   | 0.051 (7)   | 0.075 (7)  | -0.008 (5)  | 0.006 (5)   | 0.018 (6)   |
| C29 | 0.049 (5)   | 0.051 (7)   | 0.044 (5)  | 0.010 (5)   | 0.010 (4)   | 0.002 (5)   |
| C30 | 0.064 (5)   | 0.052 (6)   | 0.053 (6)  | 0.006 (5)   | 0.005 (5)   | 0.003 (5)   |
| C31 | 0.069 (7)   | 0.063 (8)   | 0.076 (8)  | 0.001 (6)   | 0.000 (6)   | -0.003 (7)  |
| N1  | 0.052 (4)   | 0.048 (5)   | 0.045 (4)  | -0.013 (3)  | 0.012 (3)   | -0.004 (4)  |
| N2  | 0.058 (4)   | 0.058 (5)   | 0.041 (4)  | -0.007 (4)  | -0.002 (3)  | 0.003 (4)   |
| N3  | 0.047 (4)   | 0.056 (5)   | 0.046 (4)  | -0.012 (3)  | 0.009 (3)   | -0.012 (4)  |
| N4  | 0.039 (4)   | 0.058 (5)   | 0.054 (5)  | -0.007 (3)  | 0.003 (3)   | 0.008 (4)   |
| O1  | 0.084 (4)   | 0.077 (5)   | 0.053 (4)  | -0.013 (4)  | 0.015 (4)   | -0.009 (4)  |
| O2  | 0.084 (5)   | 0.084 (5)   | 0.065 (4)  | -0.019 (4)  | 0.009 (4)   | 0.013 (4)   |
| O3  | 0.101 (5)   | 0.091 (6)   | 0.068 (5)  | -0.035 (4)  | 0.033 (4)   | -0.007 (4)  |
| O4  | 0.070 (4)   | 0.075 (5)   | 0.093 (5)  | -0.015 (4)  | -0.002 (4)  | 0.011 (5)   |
| Br1 | 0.1002 (8)  | 0.1210 (10) | 0.0566 (7) | 0.0003 (8)  | 0.0317 (6)  | 0.0100 (7)  |
| Br2 | 0.0836 (7)  | 0.1347 (11) | 0.0628 (7) | 0.0004 (8)  | -0.0196 (5) | -0.0041 (8) |
| Br3 | 0.1140 (9)  | 0.1142 (10) | 0.0531 (6) | -0.0114 (8) | 0.0055 (6)  | -0.0306 (7) |
| Br4 | 0.1200 (10) | 0.1090 (11) | 0.0666 (8) | 0.0057 (8)  | 0.0076 (6)  | 0.0326 (7)  |
|     |             |             |            |             |             |             |

## Geometric parameters (Å, °)

| C1—C2    | 1.503 (13) | C12—H12C | 0.9600     |
|----------|------------|----------|------------|
| C1—H1A   | 0.9600     | C13—N2   | 1.364 (9)  |
| C1—H1B   | 0.9600     | C13—C14  | 1.376 (11) |
| C1—H1C   | 0.9600     | C14—C15  | 1.442 (13) |
| C16—C15  | 1.492 (13) | C14—Br2  | 1.911 (8)  |
| C16—H16A | 0.9600     | C15—O2   | 1.246 (11) |
| C16—H16B | 0.9600     | C18—O3   | 1.240 (11) |
| C16—H16C | 0.9600     | C18—C19  | 1.444 (14) |
| C17—C18  | 1.513 (12) | C19—C20  | 1.365 (11) |
| C17—H17A | 0.9600     | C19—Br3  | 1.917 (8)  |
| C17—H17B | 0.9600     | C20—N3   | 1.327 (10) |
| C17—H17C | 0.9600     | C20—C21  | 1.489 (12) |
| C32—C31  | 1.501 (12) | C21—H21A | 0.9600     |
| С32—Н32А | 0.9600     | C21—H21B | 0.9600     |
| С32—Н32В | 0.9600     | C21—H21C | 0.9600     |
| С32—Н32С | 0.9600     | C22—N3   | 1.445 (10) |
| C2—O1    | 1.220 (10) | C22—C23  | 1.502 (10) |
| C2—C3    | 1.474 (13) | C22—C27  | 1.515 (11) |
| C3—C4    | 1.335 (11) | C22—H22  | 0.9800     |
| C3—Br1   | 1.903 (8)  | C23—C24  | 1.510 (12) |
| C4—N1    | 1.341 (9)  | C23—H23A | 0.9700     |
| C4—C5    | 1.504 (12) | C23—H23B | 0.9700     |
| С5—Н5А   | 0.9600     | C24—C25  | 1.494 (14) |
| С5—Н5В   | 0.9600     | C24—H24A | 0.9700     |
| С5—Н5С   | 0.9600     | C24—H24B | 0.9700     |
| C6—N1    | 1.457 (9)  | C25—C26  | 1.581 (11) |
| C6—C7    | 1.536 (11) | C25—H25A | 0.9700     |
|          |            |          |            |

| C6—C11        | 1.564 (10) | С25—Н25В      | 0.9700     |
|---------------|------------|---------------|------------|
| С6—Н6         | 0.9800     | C26—C27       | 1.502 (10) |
| С7—С8         | 1.495 (11) | C26—H26A      | 0.9700     |
| С7—Н7А        | 0.9700     | С26—Н26В      | 0.9700     |
| С7—Н7В        | 0.9700     | C27—N4        | 1.453 (9)  |
| C8—C9         | 1.541 (12) | С27—Н27       | 0.9800     |
| C8—H8A        | 0.9700     | C28—C29       | 1.494 (12) |
| C8—H8B        | 0.9700     | C28—H28A      | 0.9600     |
| C9—C10        | 1.541 (11) | C28—H28B      | 0.9600     |
| С9—Н9А        | 0.9700     | C28—H28C      | 0.9600     |
| С9—Н9В        | 0.9700     | C29—N4        | 1.324 (9)  |
| C10—C11       | 1.516 (11) | C29—C30       | 1.381 (11) |
| C10—H10A      | 0.9700     | C30—C31       | 1.441 (14) |
| C10—H10B      | 0.9700     | C30—Br4       | 1.916 (9)  |
| C11—N2        | 1.448 (9)  | C31—O4        | 1.204 (11) |
| C11—H11       | 0.9800     | N1—H1         | 0.8600     |
| C12—C13       | 1.515 (12) | N2—H2         | 0.8600     |
| C12—H12A      | 0.9600     | N3—H3         | 0.8600     |
| С12—Н12В      | 0.9600     | N4—H4         | 0.8600     |
| C2—C1—H1A     | 109.5      | C13—C14—C15   | 125.7 (8)  |
| C2—C1—H1B     | 109.5      | C13—C14—Br2   | 117.4 (7)  |
| H1A—C1—H1B    | 109.5      | C15—C14—Br2   | 116.4 (7)  |
| C2—C1—H1C     | 109.5      | O2-C15-C14    | 119.6 (9)  |
| H1A—C1—H1C    | 109.5      | O2—C15—C16    | 120.6 (10) |
| H1B—C1—H1C    | 109.5      | C14—C15—C16   | 119.8 (10) |
| C15-C16-H16A  | 109.5      | O3—C18—C19    | 121.5 (8)  |
| C15—C16—H16B  | 109.5      | O3—C18—C17    | 117.7 (11) |
| H16A—C16—H16B | 109.5      | C19—C18—C17   | 120.8 (10) |
| C15—C16—H16C  | 109.5      | C20-C19-C18   | 123.2 (8)  |
| H16A—C16—H16C | 109.5      | C20—C19—Br3   | 119.3 (7)  |
| H16B—C16—H16C | 109.5      | C18—C19—Br3   | 117.2 (7)  |
| C18—C17—H17A  | 109.5      | N3—C20—C19    | 120.6 (8)  |
| С18—С17—Н17В  | 109.5      | N3—C20—C21    | 117.3 (8)  |
| H17A—C17—H17B | 109.5      | C19—C20—C21   | 122.1 (8)  |
| С18—С17—Н17С  | 109.5      | C20-C21-H21A  | 109.5      |
| H17A—C17—H17C | 109.5      | C20—C21—H21B  | 109.5      |
| H17B—C17—H17C | 109.5      | H21A—C21—H21B | 109.5      |
| C31—C32—H32A  | 109.5      | C20—C21—H21C  | 109.5      |
| С31—С32—Н32В  | 109.5      | H21A—C21—H21C | 109.5      |
| H32A—C32—H32B | 109.5      | H21B—C21—H21C | 109.5      |
| C31—C32—H32C  | 109.5      | N3—C22—C23    | 113.0 (7)  |
| H32A—C32—H32C | 109.5      | N3—C22—C27    | 109.5 (7)  |
| H32B—C32—H32C | 109.5      | C23—C22—C27   | 111.1 (7)  |
| O1—C2—C3      | 119.2 (8)  | N3—C22—H22    | 107.7      |
| O1—C2—C1      | 119.2 (10) | C23—C22—H22   | 107.7      |
| C3—C2—C1      | 121.5 (9)  | С27—С22—Н22   | 107.7      |
| C4—C3—C2      | 124.3 (8)  | C22—C23—C24   | 111.4 (7)  |
| C4—C3—Br1     | 119.3 (7)  | С22—С23—Н23А  | 109.4      |
| C2—C3—Br1     | 116.0 (7)  | C24—C23—H23A  | 109.4      |

| C3_C4_N1                            | 120.7 (8) | C22_C23_H23B                                         | 109.4      |
|-------------------------------------|-----------|------------------------------------------------------|------------|
| $C_3 - C_4 - C_5$                   | 123.1 (8) | C24—C23—H23B                                         | 109.4      |
| N1 - C4 - C5                        | 116 2 (7) | H23A_C23_H23B                                        | 108.0      |
| C4—C5—H5A                           | 109.5     | $C_{25} = C_{24} = C_{23}^{23}$                      | 112 4 (8)  |
| C4—C5—H5B                           | 109.5     | $C_{25} = C_{24} = H_{24A}$                          | 109.1      |
| $H_{5} - C_{5} - H_{5} B$           | 109.5     | $C_{23}$ $C_{24}$ $H_{24A}$                          | 109.1      |
| C4-C5-H5C                           | 109.5     | $C_{25} = C_{24} = H_{24B}$                          | 109.1      |
|                                     | 109.5     | $C_{23} = C_{24} = H_{24B}$                          | 109.1      |
| H5B-C5-H5C                          | 109.5     | $H_{24A} - C_{24} + H_{24B}$                         | 107.8      |
| N1_C6_C7                            | 112.8 (7) | $C_{24}$ $C_{25}$ $C_{26}$                           | 109.0 (8)  |
| N1-C6-C11                           | 110.2 (6) | $C_{24} = C_{25} = C_{20}$                           | 109.0 (0)  |
| C7 - C6 - C11                       | 109.5 (6) | C26-C25-H25A                                         | 109.9      |
| N1 C6 H6                            | 109.5 (0) | $C_{20} = C_{25} = H_{25R}$                          | 109.9      |
| C7 C6 H6                            | 108.1     | $C_{24} = C_{25} = H_{25B}$                          | 109.9      |
| $C_{1} = C_{0} = 110$               | 108.1     |                                                      | 109.9      |
| $C_{11} = C_{0} = H_{0}$            | 100.1     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 108.5      |
| $C_{0}^{0} = C_{1}^{0} = C_{0}^{0}$ | 110.0 (8) | $C_{27} = C_{20} = C_{23}$                           | 111.0 (7)  |
| $C_{8}$ $C_{1}$ $H_{1}$ $H_{1}$     | 109.5     | $C_2/-C_{20}$ -H26A                                  | 109.3      |
| $C_0 = C_1 = H/A$                   | 109.5     | $C_{25}$ $C_{26}$ $H_{26}$ $H_{26}$                  | 109.3      |
| C8-C7-H7B                           | 109.5     | $C_2/-C_{26}-H_{26}B$                                | 109.3      |
|                                     | 109.5     | $C_{25}$ — $C_{26}$ — $H_{26B}$                      | 109.3      |
| H/A - C / - H/B                     | 108.1     | H26A-C26-H26B                                        | 108.0      |
| C/-C8-C9                            | 112.6 (/) | N4                                                   | 110.5 (7)  |
| C/C8H8A                             | 109.1     | N4-C27-C22                                           | 110.6 (7)  |
| С9—С8—Н8А                           | 109.1     | $C_{26} = C_{27} = C_{22}$                           | 109.7 (8)  |
| C/C8H8B                             | 109.1     | N4                                                   | 108.7      |
| С9—С8—Н8В                           | 109.1     | C26—C27—H27                                          | 108.7      |
| H8A—C8—H8B                          | 107.8     | C22—C27—H27                                          | 108.7      |
| C8—C9—C10                           | 110.3 (7) | C29—C28—H28A                                         | 109.5      |
| С8—С9—Н9А                           | 109.6     | C29—C28—H28B                                         | 109.5      |
| С10—С9—Н9А                          | 109.6     | H28A—C28—H28B                                        | 109.5      |
| С8—С9—Н9В                           | 109.6     | C29—C28—H28C                                         | 109.5      |
| С10—С9—Н9В                          | 109.6     | H28A—C28—H28C                                        | 109.5      |
| Н9А—С9—Н9В                          | 108.1     | H28B—C28—H28C                                        | 109.5      |
| C11—C10—C9                          | 111.2 (8) | N4—C29—C30                                           | 118.8 (8)  |
| C11—C10—H10A                        | 109.4     | N4—C29—C28                                           | 118.7 (7)  |
| C9—C10—H10A                         | 109.4     | C30—C29—C28                                          | 122.5 (8)  |
| C11—C10—H10B                        | 109.4     | C29—C30—C31                                          | 124.5 (9)  |
| C9—C10—H10B                         | 109.4     | C29—C30—Br4                                          | 118.5 (7)  |
| H10A—C10—H10B                       | 108.0     | C31—C30—Br4                                          | 116.9 (7)  |
| N2—C11—C10                          | 112.1 (7) | O4—C31—C30                                           | 121.2 (9)  |
| N2—C11—C6                           | 108.1 (6) | O4—C31—C32                                           | 119.2 (11) |
| C10-C11-C6                          | 109.6 (6) | C30—C31—C32                                          | 119.5 (11) |
| N2—C11—H11                          | 109.0     | C4—N1—C6                                             | 127.2 (7)  |
| C10-C11-H11                         | 109.0     | C4—N1—H1                                             | 116.4      |
| C6—C11—H11                          | 109.0     | C6—N1—H1                                             | 116.4      |
| C13—C12—H12A                        | 109.5     | C13—N2—C11                                           | 125.1 (7)  |
| C13—C12—H12B                        | 109.5     | C13—N2—H2                                            | 117.5      |
| H12A—C12—H12B                       | 109.5     | C11—N2—H2                                            | 117.5      |
| C13—C12—H12C                        | 109.5     | C20—N3—C22                                           | 127.1 (7)  |

| H12A—C12—H12C   | 109.5      | C20—N3—H3       | 116.5      |
|-----------------|------------|-----------------|------------|
| H12B-C12-H12C   | 109.5      | C22—N3—H3       | 116.5      |
| N2-C13-C14      | 117.6 (8)  | C29—N4—C27      | 125.3 (7)  |
| N2—C13—C12      | 117.4 (8)  | C29—N4—H4       | 117.3      |
| C14—C13—C12     | 124.9 (8)  | C27—N4—H4       | 117.3      |
| O1—C2—C3—C4     | -9.1 (14)  | N3-C22-C23-C24  | 179.2 (8)  |
| C1—C2—C3—C4     | 168.9 (9)  | C27—C22—C23—C24 | -57.2 (10) |
| O1—C2—C3—Br1    | 179.5 (7)  | C22-C23-C24-C25 | 56.6 (12)  |
| C1—C2—C3—Br1    | -2.6 (12)  | C23—C24—C25—C26 | -54.1 (12) |
| C2—C3—C4—N1     | 6.0 (13)   | C24—C25—C26—C27 | 55.3 (12)  |
| Br1—C3—C4—N1    | 177.2 (6)  | C25-C26-C27-N4  | -179.2 (8) |
| C2—C3—C4—C5     | -176.5 (8) | C25—C26—C27—C22 | -57.0 (11) |
| Br1—C3—C4—C5    | -5.3 (11)  | N3-C22-C27-N4   | -54.4 (8)  |
| N1—C6—C7—C8     | 178.6 (7)  | C23—C22—C27—N4  | 180.0 (7)  |
| C11—C6—C7—C8    | -58.3 (10) | N3-C22-C27-C26  | -176.5 (6) |
| C6—C7—C8—C9     | 56.6 (11)  | C23—C22—C27—C26 | 57.9 (9)   |
| C7—C8—C9—C10    | -54.3 (11) | N4-C29-C30-C31  | 2.1 (12)   |
| C8—C9—C10—C11   | 55.0 (10)  | C28—C29—C30—C31 | -178.6 (8) |
| C9—C10—C11—N2   | -178.1 (7) | N4-C29-C30-Br4  | 178.1 (6)  |
| C9—C10—C11—C6   | -58.0 (9)  | C28-C29-C30-Br4 | -2.5 (11)  |
| N1—C6—C11—N2    | -53.7 (9)  | C29—C30—C31—O4  | -3.4 (15)  |
| C7—C6—C11—N2    | -178.3 (7) | Br4—C30—C31—O4  | -179.5 (8) |
| N1-C6-C11-C10   | -176.2 (7) | C29—C30—C31—C32 | 172.3 (9)  |
| C7—C6—C11—C10   | 59.2 (10)  | Br4—C30—C31—C32 | -3.8 (12)  |
| N2-C13-C14-C15  | 6.2 (13)   | C3—C4—N1—C6     | -161.2 (8) |
| C12-C13-C14-C15 | -176.2 (8) | C5—C4—N1—C6     | 21.2 (11)  |
| N2-C13-C14-Br2  | 178.1 (6)  | C7—C6—N1—C4     | -132.1 (8) |
| C12—C13—C14—Br2 | -4.3 (11)  | C11—C6—N1—C4    | 105.2 (8)  |
| C13-C14-C15-O2  | -10.3 (14) | C14—C13—N2—C11  | -164.3 (7) |
| Br2—C14—C15—O2  | 177.7 (7)  | C12—C13—N2—C11  | 17.9 (11)  |
| C13-C14-C15-C16 | 168.6 (10) | C10-C11-N2-C13  | -131.6 (8) |
| Br2-C14-C15-C16 | -3.4 (12)  | C6-C11-N2-C13   | 107.4 (8)  |
| O3—C18—C19—C20  | -10.1 (14) | C19—C20—N3—C22  | -159.0 (8) |
| C17-C18-C19-C20 | 168.3 (9)  | C21—C20—N3—C22  | 22.0 (12)  |
| O3—C18—C19—Br3  | 176.3 (7)  | C23—C22—N3—C20  | -128.5 (8) |
| C17—C18—C19—Br3 | -5.2 (12)  | C27—C22—N3—C20  | 107.0 (8)  |
| C18-C19-C20-N3  | 4.9 (13)   | C30—C29—N4—C27  | -159.8 (8) |
| Br3—C19—C20—N3  | 178.4 (6)  | C28-C29-N4-C27  | 20.9 (12)  |
| C18-C19-C20-C21 | -176.1 (8) | C26-C27-N4-C29  | -129.6 (8) |
| Br3-C19-C20-C21 | -2.6 (11)  | C22-C27-N4-C29  | 108.7 (9)  |
|                 |            |                 |            |

## Hydrogen-bond geometry (Å, °)

| D—H···A                  | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | $D\!\!-\!\!\mathrm{H}^{\ldots}\!A$ |
|--------------------------|-------------|--------------|--------------|------------------------------------|
| N1—H1…O1                 | 0.86        | 1.96         | 2.588 (8)    | 129                                |
| N2—H2…O2                 | 0.86        | 1.93         | 2.584 (9)    | 131                                |
| N3—H3…O3                 | 0.86        | 1.98         | 2.602 (9)    | 129                                |
| N4—H4…O4                 | 0.86        | 1.97         | 2.596 (9)    | 129                                |
| C5—H5C···O2 <sup>i</sup> | 0.96        | 2.66         | 3.463 (12)   | 142                                |

| C12—H12B···O1 <sup>ii</sup>                                                                                                                   | 0.96 | 2.56 | 3.416 (12) | 149 |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|------|------|------------|-----|--|
| C23—H23A···O3 <sup>iii</sup>                                                                                                                  | 0.97 | 2.66 | 3.581 (12) | 159 |  |
| C28—H28C···O4 <sup>iv</sup>                                                                                                                   | 0.96 | 2.65 | 3.419 (13) | 138 |  |
| Symmetry codes: (i) $-x+1$ , $y-1/2$ , $-z+1$ ; (ii) $-x$ , $y+1/2$ , $-z+1$ ; (iii) $-x+1$ , $y+1/2$ , $-z$ ; (iv) $-x+2$ , $y-1/2$ , $-z$ . |      |      |            |     |  |



Fig. 1



